China Mobile Research Institute, Beijing, China
Abstract:Long reasoning models often struggle in multilingual settings: they tend to reason in English for non-English questions; when constrained to reasoning in the question language, accuracies drop substantially. The struggle is caused by the limited abilities for both multilingual question understanding and multilingual reasoning. To address both problems, we propose TRIT (Translation-Reasoning Integrated Training), a self-improving framework that integrates the training of translation into multilingual reasoning. Without external feedback or additional multilingual data, our method jointly enhances multilingual question understanding and response generation. On MMATH, our method outperforms multiple baselines by an average of 7 percentage points, improving both answer correctness and language consistency. Further analysis reveals that integrating translation training improves cross-lingual question alignment by over 10 percentage points and enhances translation quality for both mathematical questions and general-domain text, with gains up to 8.4 COMET points on FLORES-200.
Abstract:Reinforcement learning (RL) has shown strong promise for LLM-based machine translation, with recent methods such as GRPO demonstrating notable gains; nevertheless, translation-oriented RL remains challenged by noisy learning signals arising from Monte Carlo return estimation, as well as a large trajectory space that favors global exploration over fine-grained local optimization. We introduce \textbf{PEGRL}, a \textit{two-stage} RL framework that uses post-editing as an auxiliary task to stabilize training and guide overall optimization. At each iteration, translation outputs are sampled to construct post-editing inputs, allowing return estimation in the post-editing stage to benefit from conditioning on the current translation behavior, while jointly supporting both global exploration and fine-grained local optimization. A task-specific weighting scheme further balances the contributions of translation and post-editing objectives, yielding a biased yet more sample-efficient estimator. Experiments on English$\to$Finnish, English$\to$Turkish, and English$\leftrightarrow$Chinese show consistent gains over RL baselines, and for English$\to$Turkish, performance on COMET-KIWI is comparable to advanced LLM-based systems (DeepSeek-V3.2).
Abstract:Recent progress of voice conversion~(VC) has achieved a new milestone in speaker cloning and linguistic preservation. But the field remains fragmented, relying on specialized models for linguistic-preserving, expressive, and singing scenarios. We propose OneVoice, a unified zero-shot framework capable of handling all three scenarios within a single model. OneVoice is built upon a continuous language model trained with VAE-free next-patch diffusion, ensuring high fidelity and efficient sequence modeling. Its core design for unification lies in a Mixture-of-Experts (MoE) designed to explicitly model shared conversion knowledge and scenario-specific expressivity. Expert selection is coordinated by a dual-path routing mechanism, including shared expert isolation and scenario-aware domain expert assignment with global-local cues. For precise conditioning, scenario-specific prosodic features are fused into each layer via a gated mechanism, allowing adaptive usage of prosody information. Furthermore, to enable the core idea and alleviate the imbalanced issue (abundant speech vs. scarce singing), we adopt a two-stage progressive training that includes foundational pre-training and scenario enhancement with LoRA-based domain experts. Experiments show that OneVoice matches or surpasses specialized models across all three scenarios, while verifying flexible control over scenarios and offering a fast decoding version as few as 2 steps. Code and model will be released soon.
Abstract:Despite the impressive reasoning abilities demonstrated by large language models (LLMs), empirical evidence indicates that they are not language agnostic as expected, leading to performance declines in multilingual settings, especially for low-resource languages. We attribute the decline to the model's inconsistent multilingual understanding and reasoning alignment. To address this, we present Pivot-Aligned Self-Feedback Multilingual Reasoning (PASMR), aiming to improve the alignment of multilingual math reasoning abilities in LLMs. This approach designates the model's primary language as the pivot language. During training, the model first translates questions into the pivot language to facilitate better alignment of reasoning patterns. The reasoning process in the target language is then supervised by the pivot language's reasoning answers, thereby establishing a cross-lingual self-feedback mechanism without relying on external correct answers or reward models. Extensive experimental results demonstrate that our method enhances both the model's understanding of questions and its reasoning capabilities, leading to notable task improvements.
Abstract:Large reasoning models (LRMs) have attracted much attention due to their exceptional performance. However, their performance mainly stems from thinking, a long Chain of Thought (CoT), which significantly increase computational overhead. To address this overthinking problem, existing work focuses on using reinforcement learning (RL) to train hybrid reasoning models that automatically decide whether to engage in thinking or not based on the complexity of the query. Unfortunately, using RL will suffer the the reward hacking problem, e.g., the model engages in thinking but is judged as not doing so, resulting in incorrect rewards. To mitigate this problem, existing works either employ supervised fine-tuning (SFT), which incurs high computational costs, or enforce uniform token limits on non-thinking responses, which yields limited mitigation of the problem. In this paper, we propose Thinking-Based Non-Thinking (TNT). It does not employ SFT, and sets different maximum token usage for responses not using thinking across various queries by leveraging information from the solution component of the responses using thinking. Experiments on five mathematical benchmarks demonstrate that TNT reduces token usage by around 50% compared to DeepSeek-R1-Distill-Qwen-1.5B/7B and DeepScaleR-1.5B, while significantly improving accuracy. In fact, TNT achieves the optimal trade-off between accuracy and efficiency among all tested methods. Additionally, the probability of reward hacking problem in TNT's responses, which are classified as not using thinking, remains below 10% across all tested datasets.
Abstract:Large language models (LLMs) are increasingly deployed as conversational assistants in open-domain, multi-turn settings, where users often provide incomplete or ambiguous information. However, existing LLM-focused clarification benchmarks primarily assume single-turn interactions or cooperative users, limiting their ability to evaluate clarification behavior in realistic settings. We introduce \textbf{ClarifyMT-Bench}, a benchmark for multi-turn clarification grounded in a five-dimensional ambiguity taxonomy and a set of six behaviorally diverse simulated user personas. Through a hybrid LLM-human pipeline, we construct 6,120 multi-turn dialogues capturing diverse ambiguity sources and interaction patterns. Evaluating ten representative LLMs uncovers a consistent under-clarification bias: LLMs tend to answer prematurely, and performance degrades as dialogue depth increases. To mitigate this, we propose \textbf{ClarifyAgent}, an agentic approach that decomposes clarification into perception, forecasting, tracking, and planning, substantially improving robustness across ambiguity conditions. ClarifyMT-Bench establishes a reproducible foundation for studying when LLMs should ask, when they should answer, and how to navigate ambiguity in real-world human-LLM interactions.
Abstract:Structured data question answering (QA), including table QA, Knowledge Graph (KG) QA, and temporal KG QA, is a pivotal research area. Advances in large language models (LLMs) have driven significant progress in unified structural QA frameworks like TrustUQA. However, these frameworks face challenges when applied to small-scale LLMs since small-scale LLMs are prone to errors in generating structured queries. To improve the structured data QA ability of small-scale LLMs, we propose a self-correction distillation (SCD) method. In SCD, an error prompt mechanism (EPM) is designed to detect errors and provide customized error messages during inference, and a two-stage distillation strategy is designed to transfer large-scale LLMs' query-generation and error-correction capabilities to small-scale LLM. Experiments across 5 benchmarks with 3 structured data types demonstrate that our SCD achieves the best performance and superior generalization on small-scale LLM (8B) compared to other distillation methods, and closely approaches the performance of GPT4 on some datasets. Furthermore, large-scale LLMs equipped with EPM surpass the state-of-the-art results on most datasets.
Abstract:The rapid advancement of large language models (LLMs) and domain-specific AI agents has greatly expanded the ecosystem of AI-powered services. User queries, however, are highly diverse and often span multiple domains and task types, resulting in a complex and heterogeneous landscape. This diversity presents a fundamental routing challenge: how to accurately direct each query to an appropriate execution unit while optimizing both performance and efficiency. To address this, we propose MoMA (Mixture of Models and Agents), a generalized routing framework that integrates both LLM and agent-based routing. Built upon a deep understanding of model and agent capabilities, MoMA effectively handles diverse queries through precise intent recognition and adaptive routing strategies, achieving an optimal balance between efficiency and cost. Specifically, we construct a detailed training dataset to profile the capabilities of various LLMs under different routing model structures, identifying the most suitable tasks for each LLM. During inference, queries are dynamically routed to the LLM with the best cost-performance efficiency. We also introduce an efficient agent selection strategy based on a context-aware state machine and dynamic masking. Experimental results demonstrate that the MoMA router offers superior cost-efficiency and scalability compared to existing approaches.
Abstract:Resource Consumption Attacks (RCAs) have emerged as a significant threat to the deployment of Large Language Models (LLMs). With the integration of vision modalities, additional attack vectors exacerbate the risk of RCAs in large vision-language models (LVLMs). However, existing red-teaming studies have largely overlooked visual inputs as a potential attack surface, resulting in insufficient mitigation strategies against RCAs in LVLMs. To address this gap, we propose RECALLED (\textbf{RE}source \textbf{C}onsumption \textbf{A}ttack on \textbf{L}arge Vision-\textbf{L}anguag\textbf{E} Mo\textbf{D}els), the first approach for exploiting visual modalities to trigger unbounded RCAs red-teaming. First, we present \textit{Vision Guided Optimization}, a fine-grained pixel-level optimization, to obtain \textit{Output Recall} adversarial perturbations, which can induce repeating output. Then, we inject the perturbations into visual inputs, triggering unbounded generations to achieve the goal of RCAs. Additionally, we introduce \textit{Multi-Objective Parallel Losses} to generate universal attack templates and resolve optimization conflicts when intending to implement parallel attacks. Empirical results demonstrate that RECALLED increases service response latency by over 26 $\uparrow$, resulting in an additional 20\% increase in GPU utilization and memory consumption. Our study exposes security vulnerabilities in LVLMs and establishes a red-teaming framework that can facilitate future defense development against RCAs.
Abstract:Discrete diffusion models are gaining traction in the visual generative area for their efficiency and compatibility. However, the pioneered attempts still fall behind the continuous counterparts, which we attribute to the noise (absorbing state) design and sampling heuristics. In this study, we propose the rehashing noise framework for discrete diffusion transformer, termed ReDDiT, to extend absorbing states and improve expressive capacity of discrete diffusion models. ReDDiT enriches the potential paths that latent variables can traverse during training with randomized multi-index corruption. The derived rehash sampler, which reverses the randomized absorbing paths, guarantees the diversity and low discrepancy of the generation process. These reformulations lead to more consistent and competitive generation quality, mitigating the need for heavily tuned randomness. Experiments show that ReDDiT significantly outperforms the baseline (reducing gFID from 6.18 to 1.61) and is on par with the continuous counterparts with higher efficiency.